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A joint clustering and classification approach is proposed. This approach exploits unlabeled data for
efficient clustering, which is applied in the classification with support vector machine (SVM) in the case
of small-size training samples. The proposed method requires no prior information on data labels, and
yields better cluster structures. Through cluster assumption and the notions of support vectors, the most
confident k cluster centers and data points near the cluster boundaries are labeled and used to train
a reliable SVM classifier. Our method gains better estimation of data distributions and mitigates the
unrepresentative problem of small-size training samples. The data set collected from Landsat Thematic
Mapper (Landsat TM-5) validates the effectiveness of the proposed approach.
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Clustering and classification techniques have been widely
studied and applied in the fields of information pro-
cessing, data analysis, and computer vision, among
others[1,2]. Clustering in the form of unsupervised meth-
ods involves partitioning the unlabeled data points into
disjoint subsets (clusters) based on the underlying struc-
ture of the data. One of the most widely used clustering
algorithms is k-means and its variation[3]. For the su-
pervised classification methods, most existing algorithms
require sufficient training samples to train a reliable clas-
sifier and aim to generalize well on new data points.
However, the general supervision information provided
by pairwise constraints or label information is often un-
available in certain application domains[4,5].

To the best of our knowledge, abundant unlabeled data
available in remote-sensing images have hardly been fully
used in the classification process over the past decade,
even if they should be more representative and can be
exploited to enhance classification tasks. This charac-
teristic has recently motivated an increasing number of
research interests in the semi-supervised learning (SSL)
paradigm, which aims to improve learning performance
by incorporating unlabeled data into the learning pro-
cess. Therefore, combining clustering and classification
techniques to the analysis of remote-sensing images has
attracted great attention. It has been shown in Ref. [4]
that semi-supervised clustering is guided by pairwise con-
straints provided by the user, thus this method is not
always accurate. Chi et al. carried out directly in the
primal representation the optimization problems on sup-
port vector machine (SVM) for the classification of hy-
perspectral remote-sensing data, with the computation
complexity of O(nd2 + d3) when n ≪ d, where n is the
labeled samples and d is the features[5]. As in all super-
vised learning methods, this alternative implementation
technique requires the manual selection of training data.
In Ref. [6], binary transductive SVM (TSVM) was pro-
posed to classify multi-class hyperspectral remote-sensing

images using transductive samples, which may result in
a nonconvex optimization problem. In addition, a recent
effort in Ref. [7] employed k Gaussian mixture mod-
els constrained by labeled samples to estimate the data
distribution, and the reported classification accuracy in
each training data set was generally lower than 91% even
when there were hundreds of training samples per class.
All these methods explicitly use pairwise constraints or
label information to guide clustering and classification
learning.

One of the two major issues related to remote-sensing
image classification problems is that labeled data are of-
ten difficult to be obtained and very sparse in practical
applications. Another critical issue is that the training
samples are often collected from the same area of the
scene regardless of the variation of spectral signatures of
land cover classes in the spatial domain and fail to es-
timate the distributions for the entire data. Both prob-
lems result in the risk of overfitting the training samples
and may involve poor generalization capabilities in the
classifier[6,7].

In this letter, a novel approach combining clustering
and classification techniques is proposed to handle the
unrepresentative problem of small-size training samples
for SVM classification. We propose to import appropri-
ately unlabeled data through the clustering method to
the classification of remote-sensing images; bipartition-
based k-means (BKM) is utilized to better estimate k
initial centers, and the confidently clustered data can
then be generated. Through cluster assumption[8] and
the notions of convex hulls and reduced ellipse-like struc-
tures of the cluster regions[9], the confident data points
from different cluster regions can be further evaluated,
extracted, and labeled as training samples; subsequently,
SVM can be trained with the labeled data. The use of
clustering prior to classification approach is a natural and
practical choice because the labeled data may be unavail-
able. In contrast to Ref. [3], our version of clustering
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algorithm works in a completely unsupervised manner.
The final classification results of the proposed approach
are reported on real remote-sensing image, and the re-
sults are appealing when compared to the state-of-the-
art SVM.

Traditional k-means is sensitive to the initial cluster
center, and the clustering result varies with different ini-
tial centers. It has been shown that k-means is prone
to local minima and uncertainty regarding the number
of clusters in the given data set. Several solutions sim-
ilar to the ones used for the traditional algorithm, such
as split and merge techniques, may be adopted. In this
study, we propose a BKM approach to partition the data
set, wherein k is set as the number of classes accord-
ing to prior class knowledge. The large number of unla-
beled data is utilized by the BKM procedure to estimate
the data distribution. Each sequence of the investigated
image is divided into two disjoint parts based on gray
mean, and multi-binary images are obtained. The key
issue is to define the “density” function in order to find
the k densest regions and to approximate the underlying
distribution. For convenience, the densest region should
contain the maximum data points in the region, and the
jth (j = 2, · · · , k) densest region should have the jth
maximum data points in the region; simultaneously, the
farthest distance to all first j − 1 cluster regions can be
derived according to the “density” definition. Starting
from j = 2, they can be yielded in terms of

max(min(d(Ci, Z1), d(Ci, Z2), · · · , d(Ci, Zj−1)),

(i = 1, · · · , 2k; j = 2, · · · , k) (1)

where Ci is ith region center and Zj is the jth region
that satisfies the Ci in expression (1). The distance mea-
sure d(xi, xj) can be calculated and the object function
J in our clustering approach adopts the default as that
in k-means; a detailed description can be seen in Ref. [3].

Assuming that the data is i.i.d data, where n is data
points and b is the size of the 3rd dimension of the data
set, a BKM algorithm can be illustrated as follows.

Algorithm: BKM
1) Input: Data set X = (xi,j), x ∈ Rd, i = 1, · · · , n; j =

1, · · · , b; cluster number k.
2) Partition iteratively on X into 2k binary regions

based on the gray mean per band.
3) Compute the “density” value for all regions and

obtain the 1st region, Z1.
4) Get the remainder k− 1 cluster regions, Z2, · · · , Zk,

according to expression (1).
5) Run k-means with the selected k cluster centers.
6) Output: {Zi (i = 1, · · · , k)}.
As can be seen, our clustering method does not require

prior information other than the cluster number k (equals
the number of classes). We reasonably presume that k
cluster centers can be with the most confident class label
under the clustering model and assigned a deterministic
label, respectively; more confident data points are stud-
ied as follows.

As described above, k cluster centers are confidently
labeled and then propagated to a part of unlabeled data
from different cluster regions. However, the question is:
how can we extend the labeled training samples? As
standard SVM could optimize maximum margin hyper-

plane by introducing support vectors, we attempted to
locate such data points nearby cluster boundaries aside
from the centroids. Figure 1 illustrates this motivation.

The benefits of taking much more confident unlabeled
data into account can be seen in Fig. 1. Figure 1(a)
shows that our proposed approach (solid line) can out-
perform the boundary given by the direct SVM, with one
labeled data for each class (class boundary is denoted by
the dashed line). The boundary of the proposed ap-
proach is clearly more reasonable. Figure 1(b) illustrates
the extended labeled data based on the cluster centers
with the signs + and −. The two scaled ellipses en-
closed by the dashed line expanded the labeled data by
applying reduced ellipse-like region structure and convex
hull on the basis of the clustering result; some origi-
nally unlabeled data can be viewed as labeled data with
high confidence. As more confident training samples are
added to train a SVM model, the classifier with higher
accuracy can be obtained. As depicted in Refs. [8, 10],
cluster assumption favors decision boundaries for classi-
fication passing through low-density regions in the image
space; for instance, the most confident data points can be
the centroids or the ones near the boundaries, which can
be confidently classified. Some studies have indicated
that the training samples on the cluster boundaries bet-
ter represent the distribution of real data. Therefore, we
also exploited such data points.

The pseudo code of the proposed cluster labeling and
evaluation algorithm is illustrated as follows.

Algorithm: cluster labeling and evaluation.
1) Input: data set X = (xi,j), x ∈ Rd; cluster result

Zi (i = 1, · · · , k); region properties “regionprops”.
2) Explore the key region properties including “cen-

troid”, “area”, “convex hull”, and reduced “ellipse”; a
part of the confident data points from each cluster region
have been surveyed.

3) Label c% data points and generate a group of train-
ing samples, and run k-fold cross-validation (CV) pro-
cess.

Fig. 1. An illustrative example of combining clustering and
classification; + and − in the centers of the two cluster are
newly labeled by clustering; other data points (black and
white) are all unlabeled data. (a) Decision planes of the su-
pervised learning methods (1) and our approach (2) given by
the SVMs; (b) expanded labeled data in dashed ellipses.

Fig. 2. Band 5 of Landsat TM-5 image.
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4) Train a SVM classifier with optimal radial basis
function (RBF) kernel parameters c and g.

5) Evaluate the unrepresentative problem of the train-
ing samples in terms of CV accuracy and the ground
truth.

6) Output: SVM model and classification map of the
investigated image.

As can be seen from the above algorithm, we chose the
most confident c% data points and labeled them. If we
choose c=100, all data points from the same cluster are
labeled and used as training samples. This is impractical
because the clustering procedure might introduce incor-
rectly labeled data points into the training samples. As
a result, the classification performance will decrease be-
cause of error-labeling, although we can avoid this case
to a certain extent. Finally, the optimal classification
model can be used to classify all unlabeled data.

The proposed BKM-SVM approach is the integration of
the clustering and SVM techniques previously discussed.
The benefits of combining clustering and classification to
the analysis of remote-sensing image are validated in the
experiments.

We evaluate our approach on a real remote-sensing im-
age. Some other methods are implemented for compari-
son, i.e., k-means-based SVM (KM-SVM) and standard
SVM. The performance study in real remote-sensing im-
age classification is conducted.

The data used in the experiments were collected using
the multispectral Landsat-5 Thematic Mapper (Landsat
TM-5) on the Jiaodong Biland in Shandong Province,
China. There were originally seven bands of TM-5 sensor
with median spectral and spatial resolutions, with image
size of 332 × 464 pixels. Channel 6 was removed due to
panchromatic, thus the data set contained six features in
four land-cover types. Figure 2 shows channel 5 of the
investigated image.

Unlike purely supervised methods through manual se-
lection of regions of interest (ROIs), the training samples
in our proposed approach were automatically generated
by our clustering method in spatially disjoint patches
scattered throughout the scenario. The total number of
training samples varied from 20 to 400 to estimate the
impact of different training sample sizes, and the whole
image was used as test sample. The ground truth of
the investigated image was created by human labeling,
which indicated that the training and test samples were
generally balanced.

To demonstrate the effectiveness of our proposed algo-
rithm, we compared the following three algorithms.

KM-SVM: This classification algorithm simply em-
ploys k-means to cluster the original data set in advance,
and then every cluster center and the ones closest to
the centroids are labeled and extracted to train a SVM
classifier.

BKM-SVM: Unlike KM-SVM, BKM clustering can
capture the intrinsic geometrical structure of unlabeled
data, and the most confident data points are generated
with the aid of convex hull and reduced ellipse-like region
structures; it used to learn a Gaussian RBF kernel.

SVM: The standard SVM approach demands a number
of labeled data, which are hard to obtain even if neces-
sary prior knowledge is provided.

In our experiments, the training and test samples

were normalized in the range between 0 and 1. A one-
against-one multi-class scheme was adopted with LIB-
SVM data, and the optimal RBF kernel parameters copt

and gopt can be achieved by 10-cross validation, where
c = (2−5, · · · , 25) and g = (2−5, · · · , 25). The evaluation
metric, classification accuracy (CA) was used, which is
defined as

CA =
∑n

i=1

C(li, gi)

n
, (2)

where n denotes the total number of data points, C(li, gi)
is the counter function that adds 1 to itself if and only if
li = gi, and the predicted label li is permuted to match
the label given by ground truth gi. The classification
performance was evaluated by comparing the predicted
labels of the given algorithm with that given by ground
truth. All our experiments have been performed on a P4
1.6-GHz Windows XP computer with 512-MB memory.

In order to survey nonconvex cluster structure problem,
we first obtain the ellipse-like structure of each cluster
region and scale it with a reduced proportion. After
assuring that the data points contained in the reduced
ellipse are confidently coincident with the same cluster,
we label them. Figure 3 illustrates a reduced ellipse-like

Fig. 3. Reduced ellipse-like region structure extracted from
cluster result and its center signed with +.

Table 1. Obtained Training Samples by Different
Cluster Structures

Chasses

Training Data

Ground Size Size Size Size Size Size

Truth 20 50 100 200 300 400

Urban Area 29107 5 12 27 56 85 115

Forest 33018 3 8 20 45 68 91

Farm 31503 3 10 22 40 75 86

Water 60420 9 20 31 59 72 108

Overall 154048 20 50 100 200 300 400

Table 2. Classification Accuracy Comparison on the
Investigated Image

Training Data
Accuracy (%)

KM-SVM SVM BKM-SVM

Size 20 88.64 87.44 92.36

Size 50 89.27 88.31 93.52

Size 100 90.16 93.05 93.74

Size 200 91.21 93.82 94.28

Size 300 91.86 93.95 94.34

Size 400 92.2 94.21 95.15

Average 90.56 91.8 93.9
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Fig. 4. Comparison among the classification results provided
by SVM and our approach. (a) SVM obtained manually; (b)
our approach obtained automatically; (c) classification correct
rate versus percentage of labeled data on real TM-5 image.

structure of the investigated region, which can better cap-
ture the data distribution. This structure may introduce
noise, i.e., the black inner holes, and they must be re-
moved and never labeled.

The proposed algorithm was applied to classify the
remote-sensing image in the case of the small-size train-
ing samples acquired. Table 1 shows the different num-
bers of training samples in different splits. Experiments
with 20, 50, 100, 200, 300, and 400 training samples were
designed. However, our training samples were obtained
through automatic sub-sampling strategy instead of ran-
dom selection. Table 2 reports the classification accura-
cies provided by the proposed algorithm in comparison
to the standard SVM and KM-SVM with different train-
ing sample sizes. The classification accuracies provided
by our approach in all the data sets consistently main-
tains a stable increase, with the maximum increase of
up to 5.21% compared with the standard SVM; other
significant case is the data set of size 20, where the in-
crease obtained by the proposed approach with respect to
the SVM was 4.92%. On average, our approach outper-
forms SVM by 2.1% and KM-SVM by 3.34%. Direct k-
means procedure may clearly introduce incorrect labels.
This confirms that the proposed approach can increase
not only classification accuracy, but also stability. Fur-
thermore, the computation complexity of our approach
is no more than the standard SVM. Due to the use of
the structure of unlabeled data, each class is relatively
well separated from other classes in Fig. 4. Therefore,
the data distribution can be better estimated and the
unrepresentative problem of small-size training samples

is mitigated.
In conclusion, we study a method to generate the most

confident training samples in an unsupervised manner,
employing the clustering technique to obtain small-size
training samples by introducing much more unlabeled
data and thus enhancing the classification of remote-
sensing images. We validate the effectiveness of the
proposed approach in comparison to the state-of-the-art
SVM. To the best of our knowledge, there is no study
that focuses on clustering unlabeled data to yield small-
size labeled data for classification. The most related
study on clustering aided by labeled data to guide clas-
sification could be seen in Refs. [7, 10]. These stud-
ies require class label prior knowledge, whereas in our
case, small-size labeled data can be automatically ob-
tained and evaluated. Future research should study the
application of the proposed approach to classify hyper-
spectral data as well as the use of transductive SVM and
Gaussian mixture model (GMM) methods.
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